
Option Trading Based on Implied Volatility Forecasts using
Genetic Algorithm
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Abstract

This work proposes a financial strategy capable of trading options based on a implied volatility forecast.

It firstly presents a new algorithm that forecasts implied volatility signals using two genetic algorithms.

The first one uses technical indicators to forecast the direction of the implied volatility signals’ movement,

whereas the second optimizes the structure of the first one by finding the best configuration of its hyper

parameters. The solutions were subsequently tested using a trading simulator, developed specifically for

this work, that traded short and long positions of put and call options. Data from fifty different companies

of the Standard & Poor’s 500 (S&P 500) was used in the train and test phases, both from the time period

between January 1st, 2011 and December 31st, 2015. Results show that implied volatility forecasts can

be used to successfully trade options with profitable yields. Both long calls and short puts demonstrated

to be good investment strategies.
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Resumo

Este trabalho propõe uma estratégia financeira capaz de transacionar opções baseada numa pre-

visão de volatilidade implı́cita. Primeiro é apresentado um novo algoritmo que usa dois algoritmos

genéticos para prever sinais de volatilidade implı́cida. O primeiro usa indicadores técnicos para pre-

ver a direção do movimento dos sinais de volatilidade implı́cita, equanto o segundo otimiza a estrutura

do primeiro ao encontrar a melhor configuração dos seus hiper-parâmetros. A solução foi de seguida

testada usando um simulador de transações, desenvolvido especificamente para este trabalho, que

transacionou posições short e long de opções put e call. Na fase de treino e de teste usou-se dados

de cinquenta empresas do S&P 500 do periodo entre 1 de Janeiro de 2011 e 31 de Dezembro de 2015.

Os resultados demonstram que a previsão de volatilidade implicita pode ser usada para trasacionar

opções com resultados rentáveis. Tanto long calls como short puts demonstraram ser boas estratégias

de investimento

Palavras Chave

Comércio de Opções, Previsão de Volatilidade, Volatilidade Implicita, Aprendizagem Automática,

Algoritmo Genético, Indicadores Técnicos, Análise Técnica
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1.1 Overview

Financial markets have always attracted many investors in search of profits. Even though for many

years stocks were the most traded financial instrument, along the years many derivatives ascended in

popularity. One of those derivatives are options: contracts that give the buyer the right to buy/sell the

underlying asset from/to the seller. Although options have the potential for higher percentage returns

than stocks, they are also more complex financial instruments. An example of this increased complexity

is the pricing of options. While other financial instruments follow the rule of supply and demand, option

value has always been hard to determine, mostly relying on complex models to establish options prices.

The most used method of option pricing in financial markets is the Black-Scholes model. This model

takes into factor seven parameters, and as mentioned in [1], the only one not directly observable from

the market is the asset’s implied volatility. As implied volatility has a direct correlation with an option’s

price, knowing the movement of one’s value allows, even if incomplete, for a estimate of the movement

of the other. Based on this idea an assumption was made: If one could make a forecast of a company’s

implied volatility, one could use this information to successfully trade options in the financial market

1.2 Work’s purpose

This work aims to formulate a strategy capable investing in the financial marketing using options. In

order to accomplish this, it firstly purposes to implement a machine learning algorithm that can forecast

the movement of implied volatility signals. This machine learning algorithm will be divided in two ge-

netic algorithms. The first will use technical indicators to compute a prediction of the implied volatility’s

behaviour, the second will find the first one’s best hyper parameter configuration.

Secondly, a trading simulator will be developed in order to trade options of fifty companies of the

Standard & Poor’s 500 (S&P 500) during the period between 2011 and the end of 2015. The solution

found by the machine learning algorithm will choose the best periods to open and close positions and a

number of financial techniques will manage this trades to decrease investment risk.

1.3 Contributions

Bellow are the main contributions of this dissertation:

• The implementation of a genetic algorithm that, using technical indicators, forecasts the move-

ments of implied volatility signals.

• Based on the assumption that a company’s implied volatility has a direct correlation with its options

prices, the use of implied volatility forecast to invest in options in the financial market.

2



• The implementation of a second genetic algorithm that improves the architecture of the first genetic

algorithm by finding the best combination of its hyper parameters.

1.4 Document structure

This work is divided in five chapters as listed below:

• Chapter 1 (Introduction) starts by introducing the reader to the context in which this work ex-

ists. Then, the work’s purpose is presented with a brief description of how the author proposes

to achieve it. Finally a list of contribution is given and the overall structure of the document is

presented.

• Chapter 2 (State-of-the-Art) firstly explains all the background concepts needed to fully understand

this work implementation. Secondly, it elaborates on the related work, the studies and papers that

contribute to this dissertation realization.

• Chapter 3 (Methodology) presents the program’s architecture developed for this work.

• Chapter 4 (Results and Discussion) displays the results of the program. The case studies elabo-

rated in chapter 3 are analysed and compared.

• Chapter 5 (Conclusion) presents the conclusions extracted from the work’s result and suggests

several changes and improvements for future works.
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2.1 Overview

This section explores key concepts for the overall comprehension of this master thesis. In a first instance,

some background concepts necessary for the full understanding of this thesis are provided, alongside

with the explanation of both the stock and option market and the chosen machine learning algorithm.

Finally, it is presented a review regarding theoretical and practical studies under the subject of this work.

2.2 Background Concepts

2.2.1 Stocks and Derivatives

Stocks

When a company becomes publicly-held it can sell a portion of its ownership. To this security it is given

the name stocks, also known as shares or equities, and it can then be sold privately or publicly in the

stock market. [2]

When buying or selling stocks one can ”go long” or ”go short”. In the first scenario, a stock is

purchased with the expectation that its value will increase. When this happens the stock buyer can sell

the stock to profit from the stock value increase. On the other hand, going short or shorting occurs when

one believes that the stock value will decrease, selling a stock (that the individual doesn’t necessarily

need to have, and can thus be seen as a lending) and afterwards buying a stock from the market.

When someone believes that the value of a stock will increase, one can say that this individual has a

bullish sentiment, while if the belief is that the value will decrease is said to have a bearish sentiment.

Stock Market

The Stock Market, also known as Equity Market, is the collection of all the stock exchanges in the

world which in turn are single markets where stocks can be bought and sold under certain regulations.

Furthermore these exchanges also can trade commodities, currencies, bonds and derivatives based on

stocks. [2]

Stock Splits

Stocks can only be bought in unitary amounts. for this reason whenever a stock’s price increases, the

respective company has the ability to do a stock split. Stock split is the name given to when a company

divides its existing stocks, and doing so, increases the number of shares and decreases their price. For

example, a company with 10.000 shares with a unitary value of 800$ decides to do a stock split with the

ratio 2:1. This means that it divides its 10.000 shares into 20.000. The price of each share, as the total

6



value of the company didn’t change, will decrease to 400$. Even though some ratios of stock splits tend

to be more used than others, each company can choose the stock split’s ratio that achieves the desired

share value. For example, a company with 37.000 shares, each going for 258$ in the stock market, can

apply a 258:100 ratio to achieve a share price of 100$. This would increase the company’s number of

shares to 95.460.

Derivatives

Derivatives are financial instruments whose returns are derived from an asset. This is, the return of the

derivative is a function of the underlying asset’s value such as: RD = f(VA), where RD is the return of

the derivative D, VA is the value of the underlying asset A and f is the function that relate the return of

the derivative with the value of the underlying asset.

These assets can be of many types such as stocks, market indexes and currencies. Futures and

options are example of derivatives. One can see derivatives as contracts between two or more parties

in respect to an asset. [2] [3]

2.2.2 Options

One of the most common derivatives in financial markets are options. These are contracts, with an

expiration date T also known as maturity, that give the buyer (contrary to futures), the opportunity (but

not the obligation) to buy (call options) or sell (put options) the underlying asset for a certain price K,

called exercise price or strike price.

Exercise is the name given to the action of actually using the option to buy/sell an asset, and the

price for which an option is bought is called the premium of the option. [2] [3] [4]

Regarding the time when an option can be exercised ,there are two different possible situations to

take into account:

• European options can only be exercised in the expiration date, i.e. the buyer of the option can only

decide to buy/sell the underlying asset in the last day of the contract.

• American options can be exercised any time before the expiration date

7



Call Options

Call options are contracts that give its buyers the option of buying an asset until/at the expiration date.

When exercising this option one would buy the stock for the agreed strike price and sell it in the market

at the current market value. The profit would then be the stock market price minus the strike price and

the option premium. As the option buyer makes profit if the stock market value increases one can say

that who buys a call option has a bullish sentiment, while the call option seller has a bearish sentiment

(since there is a belief that the stock market value will increase).

The big difference between buying a call option and buying directly the underlying asset is that, as

we can see in figure 2.1, even though the maximum return of both these instruments is theoretically

infinite (when the value of the underlying asset tends toward infinity), the maximum loss of buying an

asset is much bigger than the maximum loss of buying the correspondent call option.

The maximum loss when buying a stock is the value of the stock at the time of purchase while the

maximum loss of buying a call option is the premium of the option which is considerably lower. These

outcomes happen when the value of the stock becomes zero (when a company goes bankrupt for ex-

ample) and when the option is not exercised (when, until/at maturity, the value of the underlying asset is

lower than the strike price). [2] [3] [4] [5]

For example, given the following situation:

• Vτ = 100$ is the Value of a stock S at time τ ;

• K = 120$ is the strike price of a call option relative to the stock S;

• Pc = 5$ is the price of the call option at τ ;

• T is the expiration date of the call option;

• For sake of simplicity the option in question is an european option (can only be exercised at the

expiration date);

• The return of the call option Rc if exercised is Rc = VT −K − Pc. (Rc = −Pc otherwise);

• The return of the stock is Rs = VT − Vτ ,

The individual A buys a stock at τ for 100$, at the same time the individual B buys a call option for

5$(120$ strike price):

First situation: At T the value of the stock is 200$. In this case Rs = 100$(200$ − 100$) and Rc =

75$(200$− 120$− 5$).
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Second situation: At T the value of the stock is 150$. In this case Rs = 50$(150$ − 100$) and

Rc = 25$(150$− 120$− 5$).

Third situation: At T the value of the stock is 125$. In this case Rs = 25$(125$ − 100$) and Rc =

0$(125$− 120$− 5$).

Forth situation: At T the value of the stock is 80$. In this case Rs = −20$(80$−100$) and Rc = −5$)

(option not exercised).

Fifth situation: At T the value of the stock is 0$. In this case Rs = −100$(0$− 100$) and Rc = −5$)

(option not exercised).

In the first two situations the option is ”in the money”, this means that one can exercise it and gain

profit since the stock market value is bigger than the option strike price plus the option premium. As

figure 2.1 illustrates, when a call option is in the money the profit difference between buying the option

or the underlying stock is only the premium value plus the difference between the option strike price and

the value of the stock at τ (25$ on this example).

In the third situation, exercising the option would not bring neither profit nor loss. To this situation is

called being ”at the money”. The difference in profit from call option buying and stock buying is still the

option premium value plus the difference between the option strike price and the value of the stock at τ

In the last two situations the stock value is lower than the option strike price plus the option premium.

As such, exercising it would only bring a bigger loss. In this situation the option buyer would not exercise

it and his loss would just be the option premium no matter how big the stock value decrease is. On the

other hand we can see, using the same example and as figure 2.1 illustrated, that the loss of the stock

buyer would be as big as the stock value drop with a maximum loss if the stock value became zero.

Figure 2.1: Call option returns vs. stock long position returns
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Put Options

Put options are contracts that give its buyers the option of selling an asset until/at the expiration date.

When exercising this option, one would buy the stock in the market at the current market price and sell

it to the option seller at strike price, and the profit would then be the option strike price minus the stock

market value and the option premium. As the option buyer makes profit if the stock market value de-

creases, one can say that the one who buys a put option has a bearish sentiment, while the put option

seller has a bullish sentiment (that is, with the belief that the stock market value will decrease)

The big difference between buying a put option and going short on the underlying stock is that, as

we can see in figure 2.2 , even though the maximum return of both these instruments is finite (when the

value of the underlying stock becomes zero), the maximum loss of going short is much bigger than the

maximum loss of buying the correspondent put option.

The maximum loss when going short on a stock is theoretically infinite, as in theory the value of the

stock can increase to infinity while the maximum loss of buying a put option is the premium of the option-

which is considerably lower. The second outcome happens when the option is not exercised (that is,

when, until/at maturity, the value of the underlying asset is bigger than the strike price). [2] [3] [4] [5]

For example, given the following situation:

• Vτ = 100$ is the Value of a stock S at time τ ;

• K = 80$ is the strike price of a put option relative to the stock S;

• Pp = 5$ is the price of the put option at τ ;

• T is the expiration date of the put option;

• VT is the value of a stock S at time T ;

• For sake of simplicity the option in question is an european option (can only be exercised at the

expiration date);

• The return of the put option Rp, if exercised, is Rp = K − VT − Pp. −Pp otherwise;

• The return of the stock is Rs = Vτ − VT ,

The individual A sells a stock at τ for 100$ (goes short), at the same time the individual B buys the

put option for 5$ (80$ strike price):
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First situation: At T the value of the stock is 200$. In this caseRs = −100$(100$−200$) andRp = −5$

(option not exercised).

Second situation: At T the value of the stock is 150$. In this case Rs = −50$(100$ − 150$) and

Rp = −5$ (option not exercised).

Third situation: At T the value of the stock is 75$. In this case Rs = 25$(100$ − 75$) and Rp =

0$(80$− 75$− 5$).

Forth situation: At T the value of the stock is 35$. In this case Rs = 65$(100$ − 35$) and Rp =

40$(80$− 35$− 5$).

Fifth situation: At T the value of the stock is 0$. In this case Rs = 100$(100$ − 0$) and Rp =

75$(80$− 0$− 5$).

In the first two situations the stock value is bigger than the option strike price minus the option

premium and so exercising it would only bring a bigger loss. In this situation the option buyer would not

exercise it and his loss would just be the option premium no matter how big the stock value increase is.

On the other hand, and analysing figure 2.1, one can say that the loss of going short on the stock would

be as big as the stock value increases with no maximum ceiling.

In the third situation exercising the option would not bring neither profit nor loss. To this situation is

called being ”at the money”. The difference in profit from put option buying and stock shorting is still the

option premium value plus the difference between the value of the stock at τ and the strike price

In the last two situations the option is ”in the money”, meaning that one can exercise it and gain profit

since the stock value is lower than the option strike price minus the option premium. As we can see in

this situation and in figure2.1, when a put option is in the money the profit difference between buying the

put option or going short on the underlying stock is only the premium value plus the difference between

the value of the stock at τ and the option strike price (25$ in this example).

Figure 2.2: Put option returns vs. short position returns
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2.2.3 Option Pricing

As options are a very complex financial instruments, rightfully evaluating its value is also a non elemen-

tary task. Compared for example to stock prices, which are only binded by supply and demand, option

prices are influenced by seven different factors, enumerated below [6]:

• Type of option (Call or Put),

• value of the underlying asset,

• strike price K,

• time to maturity T − τ (time between the present day and the expiration date),

• risk free interest rate,

• stock volatility,

• dividends.

Having such a variety of constraints, option pricing is a financial area in continuously development.

From empirical estimation to binomial and trinomial models, Black and Scholes’s was the first model

recognized as being reliable for option pricing [2] [6]

2.2.4 Greeks

Greeks, which have this name because they are usually represented by greek letters, are quantities that

measure the sensitivity of a derivative price to a parameter of its underlying asset, with the assumption

that all other parameters remain the same. Even though they have this incorrect assumption, greeks are

a powerful tool to evaluate the change of risk of derivatives such as options. [2] [4] [7]

Given a derivative instrument Π with an underlying asset S:

The Delta of a derivative reflects the sensitivity of its value to changes in the value of underlying asset:

∆ =
δΠ

δS
(2.1)

As the values of Π and S are directly proportional, ∆ can be seen as the constant of proportionality.

Call option value ranges between 0 and 1 whereas put options ranges between -1 and 0. As the expira-

tion date approaches, the delta of an in the money call option tend to 1 and of an out of the money call

option tend to 0. While the delta of an in the money put option tend to -1 and of an out of the money put

option tend to 0.
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The Gamma of a derivative reflects the sensitivity of its Delta with respect to changes on the value

of the underlying asset. It is given as:

Γ =
δ2Π

δS2 =
δ∆

δS
(2.2)

For example, at the money options have higher Gammas than in- or out-of-the-money ones and the

closer to maturity an option gets, the higher its Gamma tends to be. The high Γ in these situations

means that the derivative’s ∆ can change drastically with the change of the underlying asset price.

The Theta of a derivative reflects the sensitivity of its value in relation to time:

∆ =
δΠ

δT
(2.3)

Theta can be seen as a time decay. Assets like stocks have a Θ of zero while options tend to have

a negative Θ meaning that its value is always decreasing (while all else being equal). The closer the

option is to its maturity the bigger its Theta tends to be. An option with Θ = -0.40 would have its value

decreasing 40 cents per day.

The Vega of a derivative reflects the sensitivity of its value with respect to changes in the volatility of

the underlying asset (σS):

∆ =
δΠ

δσS
(2.4)

Options have always a positive Vega, with american options having a higher Vega value than euro-

pean ones as they can be exercised at any moment. A higher volatility in a stock makes the correspond-

ing american options more probable to become in the money somewhere before maturity.

The Rho of a derivative reflects the sensitivity of its value with respect to changes in the risk-free

interest rate (σr):

ρ =
δΠ

δr
(2.5)

The Rho can be seen as a percentage between the interest rate and the derivative value, as a ρ=1

would mean that a 1% increase in the interest rate of the underlying asset would increase the value of

the derivative in 1%
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2.2.5 Black & Scholes Model

Black and Scholes model is the most well known model for option pricing. Published in 1973 by Fischer

Black and Myron Scholes [5] [1], this model, as can be seen in 2.6 to 2.9, relates the value of an option

premium with its strike price, time to maturity, interest rate and its underlying asset’s value and standard

deviation (volatility) [4]:

C = SN(d1)−Ke−r(T−t)Nd2 (2.6)

P = Ke−r(T−t)N(−d2)− SN(−d1) (2.7)

Where d1 and d2 can be written as:

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√

(T − t)
(2.8)

d2 = d1 − σ
√

(T − t) =
ln(S/K) + (r − σ2/2)(T − t)

σ
√

(T − t)
(2.9)

with:

• K is strike/exercise price of the call option,

• t is the time remaining until the expiration date (as a fraction of a year),

• S is the value of the underlying stock,

• r is the short-term risk-free interest rate,

• σ is the standard deviation of the underlying stock price,

• N() is a cumulative normal probability,

• T is the exercise date,

• t is the current date.

.

In this model there is one not directly observable parameter - the asset volatility [2]. In the standard

form of this model, the historical volatility is used. But, as a perfect volatility forecast is not possible, this

method of option pricing is as accurate as the volatility estimator is precise.

Another application of this model is as volatility estimator. It can be altered to have as a parameter

an option market price in order to extract the volatility implied by that option (implied volatility) [7].
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2.2.6 Stock Volatility

Volatility is an asset characteristic that represents the fluctuation in its price. An high volatility means that

the asset’s price has a big probability of having a big fluctuation in either direction whereas a low volatility,

means that the asset price has a lower probability of having a big fluctuation in either direction [7].

Implied Volatility

Implied volatility is a stock volatility estimate derived from the market prices of that stock’s options. As

mentioned in 2.2.5, one needs to back solve the Black and Scholes model with the option premium

extracted from the market. The obtained volatility will be the one ”implied” by those prices [7].

Historical/Realized volatility

Historical volatility, also known as realized volatility, is a volatility estimate derived from past events. The

most common method of obtaining it is to compute the standard deviation of the last 21 to 23 days stock

closing prices [7].

2.2.7 VIX

Chicago Board Options Exchange (CBOE) created the Volatility Index (VIX) in order to better represent

the market volatility. Even though there are several VIXs, like 9DVIX (9 day expected volatility), 3MVIX

(3 moths expected volatility), 6MVIX (6 month expected volatility) and 1YVIX (1 year expected volatility),

whenever someone mentions VIX, is most likely referring to 3MVIX (3 month expected volatility).

In 30DVIX S&P 500 Index® (SPX) monthly and weekly options expiring in 23 to 37 days are used

to compute value that translates very roughly into the expected percentage of change in S&P 500 index

value over the next 30-day period (annualized).

For example, if the VIX is 15, this represents an expected annualized change of 15% which equates

to a 1.25% change up or down for the S&P 500 over the next 30-day period. [8]

In order to calculate the 30DVIX one should first get the weekly and monthly SPX option with more

than 23 days and less than 37 days. This narrows the options into two clusters as there is only two

dates with weekly and/or monthly options in this interval. As we can see in figure 2.3, if the present day

is February 10th, only the options of March 8th and 15th would be considered, being the near-term and

next-term options, respectively. Once per week there is a shift and the next-term options becomes the

near-term options, and there is a new next-term date. In this example March 15th and 22th will become

the new near-term and next-term date, respectively.

15



Figure 2.3: Monthly and weekly options in February and March 2019

From these two groups are only used the out-of-the-money calls and puts centered around an at-the-

money strike price K0 (one for near-term options and one for next-term options).

Choosing the strike price with the lowest difference between the call put premium, the forward index

prices, Fnear and Fnext are calculated using: F = strike price+ eRT ∗ diffcall−put.

K0near
and K0next

are the strike prices equal or immediately bellow the corresponding F values. The

only considered options are the puts with strike prices below K0 and calls with strike prices above K0.

Starting from K0 outwards all options with bid=0 should be excluded, and when two consecutive options

have bid=0 no more options in that directions are considered.

For each strike price the midpoint price Q(Ki) is calculated, which is the average between the bid

and ask prices of the put(K < K0) or call(K > K0) option. For K0 the midpoint price is the average

between its put and call options midpoints.

∆Ki is, for all strike prices except the limits, the average between the adjacent strike prices: Ki−1+Ki+1
2 .

For the limit options, this is the difference between Ki and the adjacent strike price.

The
∑
i

∆Ki

K2
i
eRTQ(Ki) part of the equation 2.10 is the contribution of each option to the overall VIX

value. The further away from K0 an option strike price is, the smaller its contribution will be.

The final two steps are applying the already computed data into:

σ2 =
2

T

∑
i

∆Ki

K2
i

eRTQ(Ki)−
1

T

[
F

K0
− 1

]2

(2.10)

Where:

• T : Time to expiration: minutesto expiration / minutesin a year,

• F : Forward index level derived from option prices,

• K0: The first strike price below the forward index level, F,

• Ki: The strike price of the i-th out-of-the-money option,

• ∆Ki: Interval between strike prices,

• R: Risk-free interest rate,
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• Q(Ki): Midpoint price of the bid-ask spread for each option with strike Ki.

And finally:

V IX = 100 ∗

√√√√{T1σ2
1

[
NT2 −N30

NT2
−NT1

]
+ T2σ2

2

[
N30 −NT1

NT2
−NT1

]}
∗ N365

N30
(2.11)

Where:

• T : Time to expiration: minutesto expiration / minutesin a year,

• NT1 : number of minutes of near-term-date to expiration,

• NT2 : number of minutes of next-term-date to expiration,

• N30: number of minutes in 30 days (43,200 min),

• N365: number of minutes in a 365-day year (525,600 min),

• 1 refers to near-term calculations and 2 to next-term calculations.

2.2.8 Financial Analysis

In order to better predict financial signals, traders usually study and evaluate feature-like signals called

indicators whose behavior can be studied in order to find trends in these financial signals. To the use of

these indicators is given the name of indicator analysis [7].

There are two distinct types of indicators: technical and fundamental. With technical analysis the

indicators are computed from the historical data of the subject with forecasting relevance. Different

formulas can be applied to the original signal in order to compute different technical indicators.

Fundamental analysis, on the order hand, uses factors that can correlate to the movement of the

signal one is trying to forecast [7]. For example, the number of cars sold yearly can be used to evaluate

a car manufacturing company growth. Even though this is considerate to be a very powerful type of

financial analysis, the fact that each fundamental signal must be acquire from each company, makes

fundamental analysis harder to use than technical analysis.
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2.2.9 Volatility Forecasting Models

ARCH model

Autoregressive Conditional heteroskedasticity (ARCH) Is considerate to be the first model for forecasting

mean returns of an asset. Based on rolling standard deviation, it calculates the standard deviation of

the next day using a weighted average of squared standard deviation values from a fixed number of past

observations. Each observation has its own respective weight that can be determined independently

from the others in order do achieve a more correct variance forecast. [9]

GARCH model

”Generalized Autoregressive Conditional heteroskedasticity (GARCH) is a generalization of the ARCH

model in which there isn’t a fixed number of past observation. The most used GARCH specificaion,

GARCH(1,1), takes in consideration three factor: The weighted average of the long-run average vari-

ence, the forecasted variance for the present observation and the present observation’s return.

The return of an asset on a present time t can be computed as:

rt = mt +
√
σ ∗ εt, (2.12)

where rt is the return of the asset, mt is its mean value, σ2
t is its variance and ε is the error for the

present observation.

The GARCH(1,1) model for forecasting a future variance of time t+ 1 can be then written as:

σ2
t+1 = ω + α(rt −mt)

2 + βσ2
t = ω + ασ2

tεt
2 + βσ2

t, (2.13)

where σ2
t+1 is the forecasted variance and ω is the long run variance. The more generalized GARCH

model is GARCH(p,q),

σ2
t = ω +

q∑
i=1

αi(rt−i −mt−i)
2 +

p∑
j=1

βjσ
2
t−j = ω +

q∑
i=1

αiσ
2
t−iε

2
t−i +

p∑
j=1

βjσ
2
t−j , (2.14)
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2.2.10 Genetic Algorithm

As stated by David A. Coley in [10], p.1, ”Genetic algorithms (GAs) are numerical optimisation algo-

rithms inspired by both natural selection and natural genetics.”. Genetic Algorithm (GA) are inspired,

as David A. Coley says, in the Darwinism theory of biological evolution. This theory states that living

beings evolve by passing its genes to their offspring (reproduction). It also states that some genes can

make a specimen more adapted, or fit, to a specific environment than others. This advantage would

increase its change of surviving and reproduce, leading to the passage of its offspring. With time better

combinations of genes will be found. This is also the foundation of GA’s.

Every GA have the same four fundamental characteristics:

1. a number of possible solutions for the problem, called population,

2. a method of evaluate how fitting each of these possible solution is,

3. a way of mixing elements from the population best solutions in order to get a new population,

4. a mutation factor to increase diversity and avoid local maximums.

If we look to nature is easy to find the inspiration from where these characteristics were taken from.

1. in any species there is a population of elements,

2. each of element of the population is ”evaluated” by natural selection. The elements that survive

in nature are ”the best solutions” for survival which is the ultimate problem that needs finding a

solution for,

3. through sexual reproduction two elements of the population mix their genome in order to create

a new element with a combination of their characteristics. Asexual reproduction happens when a

specimen creates an offspring with its exact genome. This also happen in GA when an element of

a generation x continues to the generation x+ 1,

4. whenever a new element is created, mutations in its genome occurs. That’s how the first blond

person got its blond hair but also how the cases of down syndrome occur.

19



In figure 2.4 all steps of a standard GA are displayed. These will be explained in the following

sections.

Evaluation

Crossover

Population

Chro. 3 ge2ge1

Chro. 2 ge2 ge3 ge4ge1 ge5

Chro. 4 ge2 ge3 ge4ge1 ge5

Chro. 5 ge2 ge3 ge4ge1 ge5

Chro. 6 ge2 ge3 ge4ge1 ge5

Chro. 1 ge2 ge3 ge4ge1 ge5

Chro. 3

Chro. 2

Chro. 4

Chro. 5

Chro. 6

Chro. 10.4

0.6

0.3
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Chro. 10.4
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Figure 2.4: Diagram of a Genetic Algorithm
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Population

First there is an initial population, where each element is called chromosome and is a possible solution

to the problem. Each of these chromosomes have a number of genes, equal to the solution space, that

correspond to the variables of the problem. For example, if one should use a GA to find a good linear

regression of a set of data, each chromosome would have two genes, one for the values of a and one

for the values of b in y = a+ bx.

In the example of figure 2.4 the population is constituted by 6 different chromosomes, each one of

them with 5 genes.

There are different methods of creating the first population [11]:

• Pseudo-random: the population is created with a random method (called pseudo as it is impossible

to create a truly random number);

• Quasi-random: creates a population with consideration not only to the independence between

elements (pseudo-random), but also to their coverage of the search space;

• Sequential diversity: the population is uniformly distributed throughout the search space;

• Parallel diversification: The search space is divided in a number of blocks equal to the number

of elements of the population. Within each block a pseudo-random method is used to create an

element;

• Heuristic initialization: uses an heuristic function to create the first population with the drawback of

a premature convergence.

Evaluation

After creating a population, this one goes through the process of evaluation. Here each chromosome is

given a score corresponding to how fitting its solution is to the problem. The evaluation is different for

every problem and so is the score measure. In this example the score is given in a scale of 0 to 1.

Stopping criteria

In order to designate the final solution, there must exist a stopping criteria. Which can assume one

of two possible types: Static or Adaptive [11]. In a static stopping criteria, the end of the search is

known before hand (for example, by using a fixed number of iterations, time or computational resources).

Using adaptive stopping criteria makes the algorithm search duration unknown (for example, by using a

comparison the score of each element to a predetermined value and having the algorithm stop after a

number of iterations with no progress).
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Parent selection

The next step is to select the parents to proceed to the next population and to create new chromosomes.

The chromosomes are assign a fitness value using either a proportional fitness assignment which is an

absolute fitness value like the evaluation score or a rank-based fitness assignment which consists in a

relative fitness like the position of the chromosomes after sorting them by their evaluation score.

After giving a fitness value to each chromosome a selection method must be applied. Even though

there are countless methods two of the most used ones are the Roulette wheel selection and the Tour-

nament selection [11]:

The Tournament selection, for example, consists in randomly choosing n elements of the population

into a ”tournament” group. From this group the most fittest chromosomes are chosen to reproduce.

Finally one can just select the individuals with the highest evaluation scores. Even tough this seems the

most logical approach, its emphasis in the fittest elements can lead to a local maximum due to a lack of

diversity.

Crossover

After having selected the chromosomes that will create new offspring, one can apply one or more

crossovers. These are methods of creating the offspring genes based on the parents’ genes [11]. The

following are some examples of crossover methods:

In the Intermediate Crossover each offspring gene is a weighted average of the two parents corre-

sponding genes. this can be written as follows: Goff = (x) ∗ Gp1 + (1 − x) ∗ Gp2, where G stands for

gene, off for offspring, p1 for parent 1 and p2 for parent 2. The weight x can be independent between

genes.

The Geometric Crossover consists in giving to each offspring gene the value of the square root of

the two parents gene multiplication. Goff =
√
Gp1 ∗Gp2

Using Two-Point Crossover one should pick two points at random. The genes between this two

points are taken from the first parent and the rest of the offspring genes are taken from the other parent

outside bounds of this two points.

One final example is to, for each offspring gene, picking at random the corresponding gene from

either of the two parents.

Even though only four methods were exemplified here, one should take into account that many other

methods exist. [11]
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Replacement Strategies

There is a step, between the Crossover and Mutation blocks, that is not represented in figure 2.4: the

replacement phase. It’s in this step that is decided which chromosomes get to make part of the next

population. There are two strategies [11]:

The Generational Replacement, where the new population will be comprised of the offspring created

in the crossover phase. This means that none of the selected parents in the parent selection phase

continue to the next generation.

The second strategy is the Steady-State Replacement. Contrary to the previous strategy, some of

the chromosomes of the current population will make part of the new population. This number can vary

from 1 to N − 1, where N is the population size. Additionally the chromosomes that proceed from one

generation to the next can be pick using one of the may parent selection methods from either the current

parent group or the whole current population.

Mutation

The final step in a GA iteration is the mutation phase. At this stage, each chromosome of the new

population has a probability pc of suffering a mutation. Within the mutated chromosome each gene has

a probability pg of changing its value with a minimum of one gene being picked. These two probabilities

must be carefully chosen as too small probabilities would not diversify enough the population and may

lead to a local maximum, but too high probabilities might turn impossible for the algorithm to converge

[11].

The amount of change must also be chosen. Even though a mutated gene must be able to reach

every value of that variable range, its mutation should be local, meaning that the change in the value

should be small compared to its range. For example a gene which value ranges from 1 to 50 and has

the current value of 10 should be more likely to mutate to the value 15 than to 50. Hence, the most usual

strategy is to apply a Gaussian probability with mean in the current value of the gene and a standard

deviation σ that must be small and carefully chosen.
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2.3 Related Work

After looking at the background concepts, this section focuses in the research made for this work. Firstly,

papers gathered for the option pricing problem are presented. Then, and because of the connection

between volatility and option value, some works on volatility are introduced. These works also reflect

the introduction of machine learning models on the volatility forecast theme.

2.3.1 Option pricing research

Many models have been created over the years to better evaluate options value. The most widely used is

the Black-Scholes model, first published in 1973 [5]. This formula takes into consideration several factors

that influence an option value [6]. As explained in [1] the first factor the authors took into consideration

was the underlying stock volatility. This is, of the seven factors, the only one not measurable from the

market which makes forecasting volatility extremely important to forecast option value

2.3.2 Volatility research

Some authors have theorized a correlation between implied volatility and other volatility related signals.

In [12], the authors theorize that historical volatility can be used to forecast implied volatility. A set

of Grager non-causality models, was estimated between three volatility measures ( twenty-day rolling

standard deviation, intraday standard deviation and intraday high-low range) and VIX data for twenty-

three securities. this models are statistical hypothesis tests created to determine whether the forecast

capability a signal has on another. The authors used VIX to represent implied volatility of the american

stock market and doing it so, concluded that both the rolling standard deviation and intraday high-low

range show a great potential for volatility forecasting.

VIX is a signal developed by CBOE in 1993 to measure the expected market 30-day implied volatility

using Standard & Poor’s 100 (S&P 100) option prices [8]. In 2003 CBOE changed this signal to start

using Standard & Poor’s 500 (S&P 500) option prices, and to this day is the most used signal to represent

the overall market volatility.

Many researchers tried to introduce VIX into volatility models. The authors of [13], for example, used

a modified Heterogeneous Autoregressive (HAR) model to prove that VIX plays an important role in

volatility forecasting. This modified HAR model consists in adding VIX into the original model. They

also used the same method with ”Large VIX” which is a signal that takes either the value of VIX if its

value is greater than the average value of VIX from the previous 30 days or zero otherwise. Both these

modified models have been applied to 13 markets of the G20 and led to better results than the original

HAR model, confirming a potential role of VIX in volatility forecasting.
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Other researchers have compared the forecast capability of machine learning algorithms to the of

volatility models. In [14] the authors model the Volatility Index Futures (VXF) dynamics using a multi-

layer augmented feed-forward Neural Network (NN). The also compare the NN’s VXF Open to Close

Returns (OTCR) predictions with those yielded by a logistic specification, a Naive model that always fore-

casts negative VXF OTCRs, a HAR model, and two Augmented Heterogeneous Autoregressive (HAR X)

models. Using Their work shows that the NN outperforms all other models.

The authors of [15] tried a different approach. Instead of comparing machine learning models to

volatility models like in [14], their approach focused in using NN to improve the forecast capability of

GARCH models. When applied to the three Latin-American stock markets (BOVESPA from Brazil, IPSA

from Chile and IPyC from Mexico.), the results showed that the NN could increase the forecasting capa-

bilities of the GARCH model.

Besides being used to improve other volatility models, machine learning algorithms have been shown

to be capable of forecasting implied volatility signals and in some cases outperform these hybrid models.

This is the case of [16] where the authors introduced a machine learning model comprised of a Gradient

Descent Boosting, a Random Forest and a Support Vector Machine stacked with a NN. The results

suggested that this Stacked-NN has a better forecasting capability when compared with other hybrid

models like ANN-GARCH and ANN-EGARCH.

Another machine learning algorithm that shows great potential in volatility forecasting is GA’s. In [17]

the authors apply a GA to the Black-Scholes model to find implied volatility values. The results show

that GA’s outperforms the Newton-Raphson method.

In [18] on the other hand, the authors used a GA to optimize the parameters of Support Vector

Regression (SVR). This hybrid approach was compared to a SVR and a GARCH model. The results

show that the first outperformed the last two in implied volatility forecasting, demonstrating the usefulness

of GA’s in hybrid models.
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3.1 Overview

In this chapter the overall methodology will be presented. Firstly, a description of the used data is given

and the corresponding methods of acquisition is presented. Then the processes to which this data were

subjected are explained. An overview of the training phase is the given, which includes the structure of

the two genetic algorithms. The chapter then terminates with the test phase presentation that consists

on the functionality of the trading simulator developed for this work.

3.2 Structure

The structure of this program, as can be seen in figure 3.1, is divided into four segments: Data acquisi-

tion; data processing; training phase; and test phase.

In the first phase the raw data must be obtained, in this case from different sources. It is important

to acquire data within the same time interval. Technical indicators are then extracted from each of these

raw signals, to be used as input signals in the machine learning algorithm. The third phase is to train the

system in order to obtain the fittest solution, this is, the combination of weights of each of the technical

indicators that better forecasts the movement of companies’ implied volatility . Using the solution from

the training phase, the test phase consists of evaluating the performance of the proposed solution in a

market simulator.

The first and second phases are sequential but the third and fourth are not. This last two phases are

in fact cyclical as there are in total three training phases that are always followed by a corresponding

test phase. The figure 3.4 Shows how these three train/test phases combination are structured. Each

train phase has a duration of two years and each test phase has a duration of a single year. After each

complete cycle, a one year shift is applied in the new cycle’s train and test periods.
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3.3 Algorithms

Genetic algorithms

A significant way that the proposed structure differs from others seen in chapter 2 is that two distinct

genetic algorithms are used. The purpose of the first algorithm is to optimize the weights of the different

technical indicators and the n-factors that all chosen technical indicators require as an input. But as the

meta parameters of the algorithm had to be selected, a second genetic algorithm was implemented to

handle their optimization.

The general structure of the training phase, comprised of the two genetic algorithms, can be seen in

the figure 3.2. First a population of chromosomes is created in GA2, these chromosomes contain eight

genes as shown in the figure 3.2, each one corresponding to the value of a variable used in GA1. After

being created, the population is then evaluated, it is here that the GA1 runs. After the whole population

has been evaluated, the algorithm checks if the stopping criteria is met. If yes than the algorithm has

finished and solution has been found. If, on the other hand, the stopping criteria has not been met, the

parents of the new generation are selected from this current generation. Using a crossover method, the

new generation is created. The final step before the new generation is evaluated is to mutate some of the

populations genes with a mutation method. The population is at this point again ready to be evaluated

and the cycle continues until the stopping criteria has been met.

Coming back to the GA2’s evaluation, each chromosome’s evaluation is a full run of the GA1 with

the configuration set by the values of the corresponding evaluated chromosome’s genes. This algorithm

replicates the behaviour of the GA2 as it has the same steps. The differences can be seen in the

population generation and evaluation methods. The population generation now creates a population of

chromosomes with ten genes, five corresponding to the weighs of the technical indicators signals and

five that specify a variable used in the calculation of these indicators. The evaluation method of the

GA1, showed in the figure 3.2, applies the five technical indicators to the implied volatility signal of each

company and with a weighted average sets a forecast value F . Depending on this value, the predicted

movement of the implied volatility, or I.vol, can be of decreasing(↓), stationary(→) or increasing(↑). After

comparing with the real implied volatility movement, the forecast for that day and that company is labeled

as correct or incorrect. The score of the evaluated chromosome is the percentage of correct forecasts,

set between 0 and 1. The maximum score achieved by the GA1 full run is the score of the corresponding

GA2 chromosome.

It is worth noting that by using a GA to train another GA the complexity of the overall algorithm

increases exponentially, resulting in a exponentially increased running time. In order to compensate for

this increased running time, the evaluation of the GA2’s chromosomes and therefore the calling of the

GA1 algorithm was implemented with multi threading. By running the GA2’s evaluation in six threads
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the algorithm was able to run six distinct GA1s at the same time reducing the overall running time of the

train phase to one sixth of the time. As a reference each run of the GA2 takes around one week (168h)

to complete, without this implementation this value is expected to escalate to around six weeks (1008h)

demonstrating its importance.
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Trading simulator

In figure 3.2 one can see the structure of the trading simulator algorithm. This algorithm is responsible

for testing the chromosome set as the best solution from the two genetic algorithms in the training phase.

For every day in the test period the algorithm firstly makes three checks: if there is any stock split, if

the test period has ended and if there is any option in the portfolio with forty days to maturity. After these

checks, the algorithm follows one of the three actions (open, stay, close) for every of the selected fifty

companies. This companies can be seen in the table 3.1 and were selected for entering the S&P 500

top50 companies in terms of market capitalization during the time period this work focus on. Market

capitalization is a company’s total share value.

Ticker Name Ticker Name
AAPL Apple Inc. XOM Exxon Mobil Corporation

GOOGL Alphabet Inc. Class A WMT Walmart Inc.
GE General Electric Company MSFT Microsoft Corporation
IBM International Business Machines Corporation CVX Chevron Corporation
JNJ Johnson & Johnson PG The Procter & Gamble Company
PFE Pfizer Inc. T AT&T Inc.
WFC Wells Fargo & Company JPM JPMorgan Chase & Co.
KO The Coca-Cola Company PM Philip Morris International Inc.

ORCL Oracle Corporation VZ Verizon Communications Inc.
V Visa Inc. C Citigroup Inc.

MRK Merck & Co., Inc. BAC Bank of America Corporation
PEP PepsiCo, Inc. AMZN Amazon.com, Inc.

QCOM QUALCOMM Incorporated CSCO Cisco Systems, Inc.
CMCSA Comcast Corporation INTC Intel Corporation

HD The Home Depot, Inc. DIS The Walt Disney Company
MCD McDonald’s Corporation UTX Raytheon Technologies Corporation
UPS United Parcel Service, Inc. AMGN Amgen Inc.
AXP American Express Company GILD Gilead Sciences, Inc.
COP ConocoPhillips MMM 3M Company

NWSA News Corporation MO Altria Group, Inc.
GS The Goldman Sachs Group, Inc. CVS CVS Health Corporation

BMY Bristol-Myers Squibb UNP Union Pacific Corporation
MA Mastercard Incorporated BA The Boeing Company
LLY Eli Lilly and Company USB U.S. Bancorp
OXY Occidental Petroleum Corporation FB Facebook, Inc.

Table 3.1: Traded companies

For all these companies the action taken depends on the order from the solution chromosome and

the type of position traded. If the close action is taken the algorithms closes all open positions of that

company and if on the other hand the open action is taken, the algorithm makes three checks before

opening a position. This behaviour is repeated for every company for every day in the test period.
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3.4 Data Acquisition

In any machine learning algorithm the first and most fundamental step is data acquisition.

In this work four different types of data had to be obtained: implied volatility, VIX, options information

and stock splits. All data obtained correspond to the time period between January 1st of 2011 and

December 31st of 2015. The top50 companies of the S&P 500, in terms of market share and for this

time period, where chosen for the signals of all data types except VIX.

Implied volatility

The implied volatility signal has, as mentioned in 2.2.6, a direct correlation to option prices and so it was

the subject of the machine learning algorithm forecast. This data was obtained from [19].

VIX

In order to be able to close positions and prevent new ones from being opened in periods where the

market volatility was to high, and therefore option market values where too unpredictable, a threshold

was implemented in the the 30 day VIX. During the market simulator, whenever the VIX value was above

20 points all positions where to be closed and new ones prevented from being opened despite the output

of the machine learning model. This data was acquired from [20]

Options information

The financial objects traded in the market simulator (test phase) were options. And so, for each company

of the selected 50, the close values, option symbol, and other information of all options traded during

the selected time period had to be obtained from [21]

Stock splits

Finally, as option information data was not normalized for stock splits, i.e., on the date of a company stock

splits, the options close values changed drastically and the option symbol changed to accommodate the

new strike price. This was a problem as on the date of stock splits, options in the portfolio of the

simulation became nonexistent in the data for the following days. By knowing the stock split date and

ratio for each company one can correct the portfolio whenever a stock split occurs. This data was

obtained from [22].
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3.5 Data Processing

From the raw data, feature-like signals called indicators can be computed and used as input in the

machine-learning algorithm. These indicators are widely used in financial analysis and fall into two

distinct groups: technical and fundamental. As fundamental indicators are usually much harder to come

by, only technical indicators are used in this work. These pattern based signals can be computed from

any signal with historical data.

In this work five different technical indicators were applied to the implied volatility signals of the

selected companies. Each of the five selected technical indicators has a n variable that represents

the number of days to which the formula is applied. As the choice of the n value affects the quality of

the technical indicator signal, the specific n of each of the technical indicators is one of the optimized

variables by GA1. From the implied volatility signal of each company fifty five different technical indicator

signals were computed. These correspond to the technical indicator’s formula applied with the n variable

ranging from 5 to 60 and were used as input for the GA depending on the value of the corresponding

gene.

RSI

Relative Strength Index (RSI) is a indicator that measures the magnitude of the change of a value

between two dates. It measures the average increase and decrease of a signal of the previous n days

and normalizes it between 0 and 100. As can be seen in 3.1, if the average loss is zero, meaning that

the value of the signal increased every day in the computed time period, the RSI will be 100. Otherwise

if the signal’s value decreased everyday then the RSI value will be 0.

RSIn = 100−

[
100

1 + AverageGainn

AverageLossn

]
(3.1)

ROC

Rate of Change (ROC) measures the percentage in the change between the current value of a signal

and its value n days before, as demonstrated in 3.2. This indicator does not have a maximum bound,

as it ranges from −100 to +∞. As such, in order to better accommodate its output to the GA’s input,

a normalization was applied between the values −50 and +100 which correspond to the value of the

current day (t) being half and double the value of the t − n day, respectively. This way, when a signal

doubles its value the corresponding normalized ROC will be 100 (0 if the signal halves its value)

ROCn(t) =

[
Pricet
Pricet−n

− 1

]
∗ 100 (3.2)
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StO

The Stochastic Oscillator (StO) compares the current day’s (t) value of a signal to its highest and lowest

value in the last n days. This computation follows equation 3.3 with a lower and upper limits of 0 and

1. As these limit are not ideal for the GA, a normalization was also applied but now between 0 and 1,

converting this values to 0 and 100. This way if the current day has the highest value of the last n days

this new normalized StO value will be 100 (0 if the current day is the lowest). It’s also relevant to point

that the bigger the time period n is, the smother the StO signal will be.

StOn(t) =

(
Pricet − LowestPricen

HighestPricen − LowestPricen

)
(3.3)

MACD

Moving Average Convergence Divergence (MACD) is a compound technical indicator as its value is the

difference between the value of two other indicators. As shown in 3.4, this indicators are two Exponential

Moving Average (EMA) signals with different time periods n and m with n < m.

MACDn,m(t) = EMAn(t)− EMAm(t) (3.4)

Each EMA signal is computed from the formula 3.5 where t is the current date and n is the time

period for which the EMA is calculated. This type of moving average gives more relevance to newer

data by applying a weight k, seen in 3.6, to the value of the current day. As the EMA formula requires a

previous EMA value, for the first day of calculation a Simple Moving Average (SMA) is used instead.

EMAn(t) = Pricet ∗ k + EMAn−1(1− k) (3.5)

k =
2

n− 1
(3.6)

A SMA is perhaps the most simple technical indicator. Its value is nothing more than the mean value

of the last n days of data. It’s formula is observable in 3.7.

SMAn(t) =

∑t
i=t−n Pricei

n
(3.7)

MACD has a problem when used in a GA algorithm; its output is given in absolute values. For

example, two signals, X and Y , that doubles their EMA will have different MACD values depending of

the absolute value of the signal. Ex:
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X EMA12 = 60, X EMA26 = 30, Y EMA12 = 600, Y EMA26 = 300

X MACD = X EMA12 −X EMA26 = 30

Y MACD = Y EMA12 − Y EMA26 = 300

As demonstrated, just by looking at a MACD value, nothing can be concluded about the momentum

of the signal, Therefore an extra step is needed. A 9 day EMA of the MACD is computed and given the

name of signal line (SL) and the new sl MACD value will be proportional to the difference between the

SL and MACD:

sl MACDn,m =

{
50 +

MACDn,m−SL
SL ∗ 25, for MACDn,m > SL

50− SL−MACDn,m

MACDn,m
∗ 25, for MACDn,m < SL

,n < m, 0 < sl MACD < 100

(3.8)

A positive MACD indicates that the short EMA has a higher value than its long counterpart and so

that the signal value is increasing. If, on the other hand, the MACD has a negative value, the long EMA

is bigger than the short EMA and the signal is therefore falling. MACD is, for this reason, a momentum

signal.

This new sl MACD is therefore a momentum signal of the momentum signal of the original signal

as is bigger than 50 if the momentum of the MACD is increasing and smaller than 50 otherwise. For

example if a signal’s value and its rate of growth are both increasing, then the sl MACD will return a

value above 50. If after that, the signal continues increasing but the at a lower rate of growth, than it will

tend to a possible turning point. At this point, the sl MACD will return a value below 50.

XEMA

Finally the Crossing Exponential Moving Averages (XEMA) is usually used as a visual indicator. When

the short EMA has a bigger value than the long EMA then the signal is rising. Contrary to this, if the

short EMA has a lower value than the long EMA, the signal is falling.

In order to use this idea as an input for the GA, the condition demonstrated in 3.11 is implemented

originating a signal called XEMA.

XEMAn,m =

{
100, for EMAn > EMAm

0, for EMAn < EMAm
,n < m (3.9)
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3.6 Training Phase

During the training phase the GA will use the input signals described in section 3.5 to find the combina-

tion of weights that better forecasts the movement of the implied volatility’s signal. To this end a rolling

window is used to select the training period.

Rolling Window

If the training data sample is too small, the machine learning algorithm’s result might be a good predictor

for the data in the training window but fail to forecast data in the test window. In other words, when dealing

with machine learning systems, small data may lead to over-fit. For that reason data augmentation

techniques play an important role in consolidate the training phase.

the augmentation technique used In this work is the rolling window. This consist in, instead of training

the system with a single training window, setting a smaller window size that moves over the whole training

data until all data is used. Taking as an example figure 3.4, that represents the rolling window selected

for this work: Firstly the system is trained using the window A that encloses the first two years of the

whole training data. Then, the window ”rolls”, in this example one year, and we get the window B. This

process repeats until all training data has been covered by the rolling window, ending with the window C.

This way, the training data can be used as six years worth of data with a wider diversity of signal shapes

A
2 years 1 year

Train Test

B
2 years

1 year

1 year

Train Test

2 years 1 year

Train Test
C

Data 5 years

1 year

Figure 3.4: Rolling Window example with a window with size of 100 days
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Second GA

The second GA is the most high level one, It serves the purpose of trying to optimize the hyper param-

eters of the first GA.

Population generator

In this first phase the a sequential method is used. This method assigns the same value to all genes

of a chromosome, starting low in the first chromosome of the population an increasing sequentially as

demonstrated in figure 3.5.

Figure 3.5: Sequential population generation method example

This Population is comprised of ten chromosomes, each one having eight genes corresponding to

eight first GA’s parameters: The number of parents of the parent selection phase; the number of children

of the crossover phase; the w factor used in the intermediate method, one of the crossover methods

used in the crossover phase; the mutation rate which represents each gene’s probability of mutating in

the mutation phase; the mutation standard deviation which dictates the degree of change of a gene’s

value when a mutation occurs; the parent selection method; the crossover method and the mutation

generation method. This structure is shown in figure 3.6.
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Figure 3.6: Structure of the Second GA’s population configuration

All genes are single values between 0 and 100000 for ease of calculation in the crossover and muta-

tion phases but are later translated to the corresponding value for each of their applications. For example

the mutation rate is a percentage so the gene value is divided by 100000 to produce a value between 0

and 1 with five decimal numbers. The complete transformation for all genes can be seen in the figure

3.7.

Figure 3.7: Second GA’s genes transformation
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Evaluation

During the evaluation phase the GA completes a full run of the first GA. This run returns, among all the

necessary information from the first GA, the highest score of the run. This score ranges from 0 and 1.

Each second GA’s chromosome score will be the highest score from the corresponding first GA.

After evaluating all chromosomes, the hall of fame is updated, and the configuration of the five all

time best chromosomes of that population is saved.

Stopping criteria

After each evaluation phase the algorithms checks if the run is complete. There are three different

stopping criteria: If a chromosome has a score higher than 0.9; If the population has reached the tenth

generation; If there has not been a a score increase in the last two generations.

Parent selection

So as to create a new generation the parents of the new chromosomes must be selected. Four parents

are selected by the Roulette wheel selection, which consists in giving each individual of the population

a probability of being selected. This probability is proportional to its relative score and can be computed

in various ways, with the condition that the probabilities of the population must sum to 1. In figure 3.8

is illustrated an example of this method. Here the selection probability of each chromosome is given by

pi = scorei/
∑n
k=1 scorek, where n is the number of chromosomes in the population.

Figure 3.8: Roulette wheel selection method
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Crossover

After selecting all parent chromosomes the child chromosomes are created through a crossover method.

For this GA the Random method is applied. Each gene of the new chromosome is randomly chosen

between the two corresponding genes from the two parent chromosomes.

Mutation

The final step before the new population is ready for evaluation is the mutation phase. This GA uses a

Gaussian probability distribution with the mean in the gene’s value and a standard deviation of 15000.

Each gene has a 30% probability of occurring a mutation.

First GA

The purpose of this GA is to forecast implied volatility signals. This forecast does not need to include the

value of the signal but merely the direction of the movement. The algorithm is then expected to assess

if the signal’s value will, in ten days time, be higher, lower, or considered static.

Population generator

As the population generation method is a parameter that depends on one of the chromosomes of the

second GA it can be one of three techniques: random, where each gene is given an random value

between 0 and 100000; sequential, as shown in the figure 3.5; and lastly parallel. This last method

divides the search space (0 to 100000) into equal sized parcels, the same number as chromosomes in

the population. Each chromosome is assign a range and each of its genes is randomly chosen from this

range. An example is demonstrated in figure 3.9.

The population of this GA is comprised of a hundred chromosomes. Each chromosome has ten

genes, five for the choice of the n factor present in the technical indicators values, as explained in sec-

tion 3.5, and five for the weights associated to each one of the indicators. The use of these weighs is

explained in the evaluation section of this GA . Similarly to the second GA, the genes of the chromo-

somes are single values ranging from 0 to 100000. This structure is represented in figure 3.10
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Figure 3.9: Parallel population generation method example

Figure 3.10: Structure of the First GA’s population configuration

43



Evaluation

During the evaluation step of the algorithm, a predictive score F is computed using the weighted mean

seen in equation 3.10, where n is the number of indicators, five in this work.

F =

∑n
IndicatorV aluei ∗ IndicatorWeighi∑n

IndicatorV aluei
(3.10)

The values of the technical indicators, being original or normalized, are so that if F = 50 the fore-

tasted signal is considered to be in a perfect standstill i.e. the value of the signal is predicted to stay the

same in the forecast time of ten days. Using a threshold of 10, points three ranges were created with an

associated forecast:

forecast =


up, for F > 60

stay, for 60 > F > 40

down, for F < 40

(3.11)

After acquire a prediction for every day, a ground truth is needed so to evaluate the correctness of

the prediction. To this end a comparison between the implied volatility value of the ”current” day and of

the one ten days later was made. If the value had increased over 3 points the real forecast was of an

up day; if the value had decrease 3 points or more the real forecast was of a down day; if, on the other

hand, the value had not move more than three points in either direction, the real forecast was of a stay

day. The forecast set by the algorithm was then compared with this ground truth and saved as a correct

or incorrect forecast.

This was reproduced for each day in the training period, for each of the selected companies. It is

also worth to mention that for each company the algorithm used the technical indicator signals applied

to the corresponding implied volatility.

This procedure resulted in the return of the total number of correct and incorrect foretasted days.

The evaluated chromosome was then given a score corresponding to the percentage of correct ones,

displayed in equation 3.12, ranging between 0 and 1.

score =
NrCorrectDays

NrCorrectDays+NrIncorrectDays
(3.12)

Moreover, whenever a new generation was fully evaluated and did not have a new higher score, the

mutation standard deviation would increase by 2500. As a stagnation in the population’s score could

mean that the algorithm has reached a local maximum, the increase of the mutation standard deviation

should allow for increasingly different solutions to be found. This technique is called hyper mutation.

44



Stopping criteria

The stopping criteria for this GA were the same of the second GA but differentiating in the values. The

run would end if a score of 0.9 was achieved by any of the chromosomes, if the maximum score in the hall

of fame had not increase for twenty generations and if the population reached the end of its hundredth

generation. Reaching one of this criterion would result on the termination of the first GA’s run, returning

its necessary information to the second GA’s evaluation of one of its chromosomes, starting a new first

GA’s run for the evaluation of the next second GA’s chromosome.

Parent selection

After evaluation every chromosome of the population, if the stopping criteria had not been reached, new

parents needed to be selected in order to create a new generation. The number of parents, unlike the

second GA was not pre selected. This number could not be lower that two nor bigger than the number of

chromosomes in the population meaning that in extreme conditions every chromosome could be used

as a parent for the next generation. This dynamic value was linked to one of the existing genes of the

second GA’s chromosomes.

Also contrary to the second GA, where only one method for the parent selection was applied, in

this first GA the method through which the parent chromosomes were selected varied. The value of

the corresponding gene of the second GA’s chromosome responsible for that particular first GA’s run,

dictated which method was applied. This method could be one of the following:

-Roulette method, already explained in the parent selection section of the second GA, where each

chromosome is given a probability of being selected based on their score [11].

-Top method, where the chromosomes were selected by the highest score first until all parent’s slots

had been filled [11].

-Tournament method, mentioned in section 2.2.10, randomly selects a group of chromosomes. From

that group the parents are the chromosomes with the highest scores [11].

-Roulette/Top method sees the merge of these two methods. Firstly a pre-established number of

chromosomes are selected by their score -top method-. Then, the rest of parent slots are filled using the

roulette method [11].
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Crossover

Similarly to the previous phase. there is no pre-assign method for the first GA crossover. Instead, the

method depends once again on the value of the second GA corresponding chromosome’s gene.

-The Random method consists in randomly selecting, for each gene, the values of one of the parents

corresponding gene [11].

-In order to use the Geometric method one has to apply the equation 3.13 where the value of a new

chromosome’s gene is the square root of the two parents’ corresponding genes multiplication [11].

valueG3
=
√
valueG1

∗ valueG2
(3.13)

-In the intermediate method an extra parameter is needed. It is here where the factor w, value of one

the first GA chromosomes’ genes, is used. following equation 3.14, the value of the new chromosome’s

gene is a weighted mean between the two parents’ corresponding genes value. The factor w is the

weight of the first parent [11].

valueG3
= w ∗ valueG1

+ (1− w) ∗ valueG2
(3.14)

-The One point method randomly chooses the position of one of the new chromosome’ genes. The

genes prior to the chosen position receive the value of the corresponding genes from the first parent.

The remaining genes are attributed the values of the second parent’s corresponding genes [11]. Figure

3.11 shows an example of this method.

Figure 3.11: One point crossover method example
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-The Two point method is very similar to the One point method, but this time the gene list is divided

in three groups split by the two randomly selected points. To the genes of the first and third groups

are assign the values of the first parent’s corresponding genes. The second group’s genes receive the

values o the second parent’s corresponding genes as can be seen in figure 3.12 [11].

Figure 3.12: Two point crossover method example

Mutation

Finally the mutation phase is the only one with no changes. Since both the first and second GAs’ genes

have the same range, the same method can be used in the two algorithms. This abstraction is the

reason why the second GA’s genes are kept with the standard range and associated value and only

translated when really needed.

47



3.7 Test Phase

After completing the training phase, which implies a full run of the second GA, the fittest solution needs

to be tested. Besides having two sets of genes as the solution to the training phase, one for each GA,

the only important to test is the chromosome of the first Genetic Algorithm (GA) with the highest score.

Building on the conjecture presented in the introduction of this work, that the value of an asset’s im-

plied volatility has a direct correlation to the price of any of that asset’s options, the test phase evaluates

the feasibility of the proposed solution to predict the implied volatility and thus the aptitude to buy and

sell options for profit.

Case studies

The test phase of this work is divided into four case studies. In each case study the simulator trades

different types of options, either call or put, to better analyse which yields better results. Another aspect

that changes between case studies is the type of positions. These can be long, where the option is

bought from the marker and later sold, or short, where sold options are later bought back. An extended

explanation of this characteristics can be seen in sections 2.2.1 and 2.2.2.

The four case studies consist then on:

1. Making long positions of call options.

2. Making long positions of put options.

3. Making short positions of call options.

4. Making short positions of put options.

All transacted options are in-the-money and in between 90 days to 40 days until maturity. As options

approximate maturity their prices get more susceptible to variations of corresponding stock. As matu-

rity draws closer, price percentage changes become steeper. Closing positions forty days to maturity

decreases some of the risk from the trade.

Trading Simulator

The trading simulator keeps record of a series of structures for later analysis: a dictionary with every

trade, containing both the open and close price, number of options of the trade and the option’s root; a

portfolio with all open positions not yet closed and their corresponding options; a record of the capital

throughout the test time period; and a record of the Return on Investment (ROI) of the trades.

The first step of the simulator is to check if any company had a stock split in that day. If there is an

occurrence and there are options of that company in the portfolio, the options’ root and quantity have to
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be corrected -as explained in the stock split section in 2.2.1-. The open positions must also be corrected:

both option price, quantity and root.

The next step is to check for the end of the test period. If indeed is the last day all positions are closed:

for long positions all options are sold and for short positions they are bought back. The last check before

addressing the orders from the GA’s chromosome is to check if any options in the portfolio has reached

the forty day to maturity boundary. If that happens the position associated with those options is closed

(the options are either sold or bought back in case of a long or short position respectively).

The simulator can now analyse the orders created by the solution chromosome of the trading phase.

This consists in a signal for each company that can take three values depending on the forecast made

by the solution chromosome:

orders =


1, implied volatility increase
0, implied volatility stationary
−1, implied volatility decrease

(3.15)

Depending on the type of position and thus on the case study, the same order can lead to different

actions. The table 3.2 demonstrates this relationship.

position
order 1 0 -1

long open - close
short close - open

Table 3.2: Actions depending on the type of positions and order value

This disparity can be explained by the following example: If an order has a value of 1 the the prediction

is for the implied volatility to increase which, by the assumption of this thesis, will lead to and increase

of the option’s price. Now there are two options, if the position is long, then the action should be to open

a position and buying options. If, on the other hand the case study uses short position, then the action,

if there is any open position, should be to close and buy the options back. The opposite happens if the

order has a value of −1.

The simulator now makes three verification before opening a position: The first one is the check if

the VIX value is below twenty points since a high VIX value may be consider the result of an unstable

market.

The Second verification uses the value of the option’s specific XEMA. This signal is computed for

every option of every traded company. The behaviour of this signal is as explained in section 3.5 but

similarly to the order signal, it takes the values of 1, 0 and −1. In order to control any possible false

forecasts by the GA, the two signals are compared and if their values do not coincide the simulator does

not go through with the order.

The third verification checks if the maximum investment per company has been reached. In order
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to decrease risk in investments is important that the capital is distributed in a diverse portfolio. For this

reason each position has a maximum investment of 0.5% of the initial capital with each company having

a maximum of investment of 5% of the initial capital.

Once the simulator has all the ”approvals” it buys, sells or does nothings according to the order. If

the order is to open a position, by either buying or selling transactions, a single option is chosen, the

first in-the-money options that satisfies the case study requirements. The number of options bought or

sold is determine by a maximum capital per transaction 0.5% of the initial capital, in this work this was

five thousand dollars (5000$). If on the other hand the order is to close then all open positions of that

company are closed, depending on the case study the options are sold or bought back.

After each trading the capital, net value, ROI are updated as is the portfolio and trade dictionary.

There are two important signals that will be return once the simulation has finished: The profit and

the net value. The net value consists on the sum of the capital and the market value of every option in

the portfolio at that particular moment, in case of long positions or the capital value minus the market

value of every option in the portfolio at that particular moment, in case of short positions. This way the

true evolution of the simulator’s portfolio value can better be perceived.

Finally the third signal by which the solution chromosome will be evaluated is ROI following the

formula 3.16. This signal is widely used in financial analysis to quantify the success of a trading strategy.

ROI =
return of investment
cost of investment

(3.16)
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4.1 Overview

In this chapter the result of this work will be introduced and discussed. Starting with the training phase,

for each of the three training periods, the evolution of the genetic algorithms score will presented as

well as the composition of the best scoring chromosome. In the test phase result section the trading

simulator results for the four case studies will be presented and analysed.

4.2 Train phase results

Even though the train phase is divided in three time periods corresponding to the trading days of 2011,

2012 and 2013, its result section will be divided by a different structure. Firstly the composition of the

GA2’s solution chromosome for the three time periods will be presented and analysed, followed by the

composition of the GA1’s solution chromosome of the three different periods, and ending with the score

evolution graphics. This structure is used to enable an easier comparison between the results of the

time periods.

GA2’s chromosome composition

The composition of the GA2’s solution chromosome of the first, second and third period can be seen in

tables 4.1, 4.2 and 4.3 respectively. For ease of comprehension these are not the actual genes’ values

but the variables values that they represent. The original genes’ values are integers between 0 and

100000.

As GA2’s evaluation is not tied to a financial instrument as implied volatility, the expectation was

that the composition of the three solution chromosomes would be similar to one another. This expec-

tation is met, as can be seen by comparing the three compositions. Starting by the population gen-

eration method, parent selection method, and crossover method, its noticeable that, even though the

actual genes’ values differ, the same methods are selected in the three time periods. As the preferable

crossover method was not the intermediate method, the crov. w variable has no significant meaning

for the solution since this was a parameter only used in this specific crossover method. The rest of the

variables take standard values, for example the mutation rate varies from 0.1 to 0.2 which is predictable

seen as a high mutation rate can prevent the algorithm convergence towards a maximum. Another ex-

ample is the number of parents being always less than half of the population as a bigger percentage of

parents would propagate bad solutions into the next generations.
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First period’s GA2 chromosome
number of parents number of children crov. w mutation rate

39 68 0.2 0.141
population gen. method parent selection method crossover method mutation std.

random top 1 point crossover 10000

Table 4.1: GA2’s best scoring chromosome composition in the first training period

Second period’s GA2 chromosome
number of parents number of children crov. w mutation rate

21 80 0.37657 0.2
population gen. method parent selection method crossover method mutation std.

random top 1 point crossover 10000

Table 4.2: GA2’s best scoring chromosome composition in the second training period

Third period’s GA2 chromosome
number of parents number of children crov. w mutation rate

11 90 0.1 0.1
population gen. method parent selection method crossover method mutation std.

random top 1 point crossover 5000

Table 4.3: GA1’s best scoring chromosome composition in the third training period

GA1’s chromosome composition

In tables 4.4, 4.5 and 4.6 the compositions of the GA1’s solution chromosomes of the three time periods

can be seen respectively. Similar to the previous section some of the genes displayed in the following

tables are not associated with their actual value but with the variable they represent. This is happens

in the case of the last four genes. Although the genes’ values range from 0 to 100000 the values the

displayed variable is the corresponding n factor of the technical indicators.

Contrary to the GA2, the GA1’s evaluation directly interacts with a financial instrument, implied volatil-

ity. As the financial market is a very complex system and contrary to physical systems, is influenced by

human sentiment and actions, the shape of a company’s implied volatility signal can be completely dif-

ferent in two distinct time periods. For this reason the expectation was that depending on the time period

of the train phase, the solution chromosome composition would have a significant variation. As can be

seen in the three following tables, this does not occur. The case might probably be that, being the train

periods three consecutive years, the time between them is not enough so that the financial market suf-

fers a fundamental change that would require a completely different configuration of technical indicators.

In terms of chromosome composition, from the three solution chromosomes can be seen that that RSI

and MACD are the most impactful technical indicators in the forecast computation, followed by XEMA.
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GA1 chromosome
RSI weight ROC weight StO weight MACD weight XEMA weight

88543 266 29 63814 926
RSI n ROC n StO n MACD n XEMA n1,n2

60 46 56 51 2-20

Table 4.4: GA1’s best scoring chromosome composition in the first training period

GA1 chromosome
RSI weight ROC weight StO weight MACD weight XEMA weight

62624 1986 55 86145 1235
RSI n ROC n StO n MACD n XEMA n1,n2

60 5 7 51 2-20

Table 4.5: GA1’s best scoring chromosome composition in the second training period

GA1 chromosome
RSI weight ROC weight StO weight MACD weight XEMA weight

99834 56 23 17188 1784
RSI n ROC n StO n MACD n XEMA n1,n2

60 53 41 5 2-20

Table 4.6: GA1’s best scoring chromosome composition in the third training period

Score evolution

The score evolution of the three different train periods are presented in figures 4.1, 4.2 and 4.3 with

the maximum final scores of 0.5120, 0.5910 and 0.6104 respectively. These values means that 51% to

61% of the trading days the machine learning algorithm can correctly predict the direction of the implied

volatility signal in a period of ten days. This result meets the expectations as implied volatility is a very

complex signal and its forecast is a highly discussed, ever changing problem, as explained in the state

of the art.
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Figure 4.1: Score evolution during the first train period

Figure 4.2: Score evolution during the second train period
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Figure 4.3: Score evolution during the third train period

4.3 Test phase results

Table 4.7 presents the trade statistics for the four case studies in the three different test periods. It can

be seen that the two case studies with the higher percentage of positive trades are the long calls and

short puts with this value ranging from 60% to 65%. This comes as no surprise as the financial market

and in particular the S&P 500, despite short term fluctuations, tend to have a positive growth in the long

term. These upward tendency signifies that put options usually lose value as the companies increase

theirs. This, combined with the fact that options loose value as they reach maturity makes put options

the best choice to open short positions, as can be seen in figure 4.4
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Case study Time period total trades positive trades negative trades % positive trades

Long Calls
1st period 25 16 9 64%
2nd period 31 17 14 64,84%
3rd period 26 16 10 61,54%

Long Puts
1st period 441 147 294 33,33%
2nd period 372 121 251 32,53%
3rd period 437 132 305 30,21%

Short Calls
1st period 88 42 46 47,73%
2nd period 79 42 37 53,16%
3rd period 26 22 4 84,62%

Short Puts
1st period 1270 805 465 63,39%
2nd period 914 586 328 64,11%
3rd period 325 203 122 62,46%

Table 4.7: Trades comparison for the different case studies and test periods

Figure 4.4: Traded options’ value during the second test period for the short puts case study
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On the other hand, and despite the continuously decrease of options value, call options increase their

price as the corresponding stock value increase. This opposition makes for the type of signals seen in

figure 4.5. This tendency to have more upward movements that put options value, makes call options

better choices for long positions than put options. The other two case studies, long puts and short calls,

are somehow contradictory in its nature. As already explained in the current financial market puts tend

to loose value as calls tend to increases theirs. By this reasoning, opening long positions (where the

value is expected to increase) with a put option (where the value tends to decrease by the behaviour of

the market) has a higher risk as implied volatility is not the only conditioning in option pricing and even

with a near perfect implied volatility forecast this two case studies would be less reliable than short puts

and long calls.

Figure 4.5: Traded options’ value during the second test period for the long calls case study
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The difference between the number of trades of short puts and long calls seen in table 4.7 can be

explained by the fact that, as options value intrinsically decreases with time, there are more situations

in which a short position is advantageous than with long positions, that are perpetually fighting against

the ”natural” movement of options value. Besides this occurrence, throughout the test periods long calls

have showed to yield a bigger profit for trade, and thus a bigger ROI, that short puts, as can be seen

in table 4.8. Besides this occurrence by the end of each of the test periods the short puts case study

yielded a higher absolute profit that long calls. This happens because of the increased number of trades

this case study makes. As already could be predicted by the previous table, the long puts and short calls

case studies have negatives profits, with the long puts being the case study with the worst result as it

has both the lowest ROI and bigger number of trades of the two.

Case study Time period ROI Profit Profit/trade Avg. Profit

Long Calls
1st period 21,72% 27.081k$ 1083,24$

41.622k$2nd period 23,57% 36.49k$ 1177,01$
3rd period 47,21% 61.295k$ 2357,5$

Long Puts
1st period -7,43% -163.678k$ -371,15$

-221.591k$2nd period -10,93% -203.002k$ -545,70$
3rd period -12,28% -268.092k$ -613,49$

Short Calls
1st period -1,92% -8.585k$ -97,56$

-3.031k$2nd period -3,77% -15.507k$ -196,29$
3rd period 34,35% 33.185k$ 1276,35$

Short Puts
1st period 06,53% 415.921k$ 327,50$

289.561k$2nd period 08,65% 363.648k$ 397,86$
3rd period 05,81% 89.113k$ 274,19$

Table 4.8: ROI and profit analytics for the different case studies and test periods

59



4.3.1 ROI

The ROI evolution of the four case studies for the three test periods can be found in figures 4.6, 4.7

and 4.8. Different from table 4.8, now, not only the final ROI value can be seen, but the whole evolution

throughout the test periods. From these figures it can be seen that some periods are better than others

depending on the case study. For example in 4.6, short puts ended with a negative ROI value but by the

end of the test period it was already positive. Even in 4.7, where the short put ROI reaches 24% and has

a decline in the second half of 2013, the final ROI value is positive. This shows that the duration of the

test period was not too short as the algorithm has time to compensate for eventual bad periods. In the

case of the two worst case studies, short calls and long puts, the opposite occurs, even though there are

some periods with a positive ROI value, as the majority of trades have a negative performance, the ROI

value tends to negative. This can be seen in figure 4.8 where even thought there is a lucrative period

by the end of 2014, the overall performance is negative. The test period is also not too long as there is

no correlation between the duration of the test and the ROI value. Is expected that if a trained algorithm

was applied to a longer test period the returns would decrease, as the time distance between test and

train period would result in too different market behaviours.

Figure 4.6: ROI evolution for the four case studies during the first test period
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Figure 4.7: ROI evolution for the four case studies during the second test period

Figure 4.8: ROI evolution for the four case studies during the third test period
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4.3.2 Net Value

Figures 4.10, 4.11 and 4.12 represent the evolution of the net value of the portfolio throughout the

respective test period. This value calculation depended on the case study. In a case study with long

positions, is the sum of the capital and the market value of all options in the portfolio. In a case study with

short positions, is the capital value minus the market value of all options in the portfolio. This is a better

parameter to evaluate the results of the case studies than pure capital as doesn’t treat investments as

losses of money. For example, in figure 4.9 the traded instruments are long calls. If the capital was the

analysed parameter, by the end of 2014 one could read that the algorithm had placed bad position and

later recuperated, but by looking at the net value it can be seen that the capital was used to open a

position where the option value increased.

Figure 4.9: Holdings of the long calls case study in the third test period

After looking at the ROI graphs, the following figures show that besides having a lower ROI value

than long calls, the increased number of trades makes trading short puts the best case study in terms of

absolute profit.
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Figure 4.10: Net value evolution for the four case studies during the first test period

Figure 4.11: Net value evolution for the four case studies during the second test period
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Figure 4.12: Net value evolution for the four case studies during the third test period

4.3.3 Profit

The profit evolution for the four case studies in the three test periods can be seen in figures 4.13, 4.14

and 4.15. Even though the long calls case study has the biggest ROI value of the four, the short puts

case study managed to open more positions and thus be the most profitable case study. In the first

test period it ended with a profit of 415.921k$ which corresponds to a total growth of 41,59% of the

initial investment, or 20,795% per year. In the second test period the total growth was of 363.648k$

and 36,36% and 18,18% of percentile growth in two and one year respectively. In the final test period

these values where 89.113k$ total, 8,91% in two years and 4,455% yearly. It is noticeable that having a

maximum investment per company as a percentage of the initial investment is very important. In two of

the three time periods the short puts case study started with a negative profit but as the losses where

controlled, the algorithm managed to revert the situation and make a good profit. If the investments

where not controlled the portfolio might had run out of capital in the start of the test period and would

not be able to compensate.
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Figure 4.13: Profit evolution for the four case studies during the first test period

Figure 4.14: Profit evolution for the four case studies during the second test period

65



Figure 4.15: Profit evolution for the four case studies during the third test period
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5.1 Overview

This work presents a method of investing in the financial market, in particular option market, different

from what is currently commonly used. Using a conjugation of a machine learning algorithm, called

genetic algorithm, and financial techniques, to control investment risk, the proposed approach manages

to yield good and stable returns in option trading.

Starting with the machine learning algorithm, two interlinked genetic algorithms were implemented

with the objective of forecasting implied volatility signals of companies in the american financial market.

The first uses technical indicators applied to implied volatility signals to culminate in a solution capable

of forecasting the movement of these signals. The second genetic algorithm specializes in improving

the first one by finding the best configuration of the the first algorithm’s hyper parameters.

Finally, after finding the best solution to forecast the behaviour of implied volatility signals, the trading

simulation trades options based on the assumption that option prices are directly correlated to the re-

spective company’s implied volatility value. This trades are monitored by a series of financial techniques

to diminish investment risk. The simulator tests four different case studies, in the form of type of positions

(long/short) and type of options (call/put) combinations, for three differed test periods of two years each.

The conclusions drawn from this work results are presented in this chapter as well as some limitations

that may have been found during its development. Lastly, some directions that future work can take to

surpass this work limitations, are given.

5.2 Conclusion

The results analysed in the previous chapter prove that option trading based on implied volatility fore-

casting is a valid approach for profitable investment in the financial market. Implied volatility is a very

complex signal that has a multitude of outside influences which makes accomplishing near perfect fore-

cast of its movement close to impossible. A clear limitation in the algorithm is the choice of technical

indicators. As two of the five technical indicators are responsible for the majority of the forecast compu-

tation, the solution suffers a limitation in its forecast complexity. Besides this fact, the machine learning

step of this work accomplishes a good enough prediction that allows for the trading simulator to produce

satisfying results. This does not mean that further improvements are not recommended. A more reliable

forecast would benefit the outcome of this work as this is the biggest constrain for improving overall

results,

Following the machine learning step, the trading simulator yielded promising results. Out of the four

case studies two stood out: Long calls and short puts. Long calls repeatedly presented the biggest Rate

of Investment of the four making it the most capital efficient case study. The only problem with this case

study is the low number of adequate investments found by the machine genetic algorithm’s solution. For
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this reason, in spite of the high ROI values, the long calls case study did not yield the most profitable

results. This was achieved by the short puts case study. Besides having a lower ROI than long calls, the

increased number of opened positions resulted in the most profitable case study, with an average profit

per year of 14,48% of the initial capital.

Altogether this work demonstrates that, according with the assumptions made in the introductory

chapter, Implied Volatility forecasting can be used to trade options in the financial market, being a valid

strategy, capable of yielding satisfactory results.

5.3 Future work

In spite of the good results produced by this work, there are some aspects that, if addressed in the

future, could substantially improve its performance and results. Furthermore, the already mentioned

limitations of this work can easily be addressed in the future. The following are some of the solutions

and approaches that could be later implemented.

• As the option database is divided in trading days, each file consists in a .csv file with millions of

entries, each for every option traded in that day. If a different structure was adopted, for example

dividing it also by company, the access time of this data would diminish, resulting in a much faster

trading simulator.

• The time the training phase takes could also be improved. A future work could try to run the genetic

algorithm responsible for the implied volatility forecast with the hyper parameters of this work GA2

solution chromosome. Eliminating the second genetic algorithm might decrease the forecasting

score but would also significantly decrease the training phase running time.

• In order to improve the genetic algorithm’s forecast capability, different technical indicator should

be tested and fundamental analysis should also be implemented.

• Other machine learning algorithms, like a neural network, could be implemented, rather than ge-

netic algorithm, to compare the the capability of forecasting implied volatility signals movements.

• In the trading simulator, loss controlling mechanisms could be applied like trailing stop-losses.

• To better analyse which options represent the best investments, one should experiment with dif-

ferent ranges of in-the-money and out-of-the-money.
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